

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Provision AWS Services through Tanzu Application Service Using

the AWS Service Broker for VMware Tanzu

by Ryan Niksch, Senior Solution Architect AWS

Enterprise customers tell us that they’re looking for application modernization and greater agility.

They may also need to work in a hybrid context, and want technology that makes it easy to run in

multiple environments now, and in the future.

To meet these needs, they are choosing application platforms such as Tanzu Application Service (and

the upstream open source Cloud Foundry). Yes, there are many do-it-yourself solutions in the market,

but these require investments of resources and effort to integrate, and in some cases custom security

and compliance components must be developed as well. With Tanzu Application Service, you can

instead focus on building your business-critical apps, on a platform that also provides “guard rails”

and a rich feature set.

There are two open source projects that you can use to get a Tanzu Application Service production

solution up and running on AWS. Once there, you can accelerate the integration and adoption of

native AWS services such as Amazon Relational Database Service (Amazon RDS), Amazon

DynamoDB, Amazon Simple Queue Service (SQS) and Amazon Simple Storage Service (Amazon S3)

into your applications stacks, as part of your modernization process.

In this post, I’ll first show you how to rapidly provision Tanzu Application Service on AWS through an

AWS Quick Start. Then I’ll demonstrate using the AWS Service Broker – now available via Tanzu

Network – to gain further agility and modernize your application stacks. Customer’s look to the Tanzu

Network as their trusted source for sourcing the binaries they rely on for operating, securing, and

extending their platforms’ capabilities.

The Tanzu Application Service (TAS) on AWS Cloud Quick Start is an open source

CloudFormation-based reference deployment which can be provisioned in a few hours by filling in a

few parameters. This solution will build out a production-ready, scalable, resilient, reference

architecture (diagram below) which takes advantage of multiple availability zones (AZs), with a

managed Amazon Relational Database Service (Amazon RDS) deployed in a multi-AZ configuration.

Elastic Load Balancers allow for the addition of nodes without significant downtime.

https://aws.amazon.com/rds/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sqs/
https://aws.amazon.com/s3/
https://aws.amazon.com/partners/servicebroker/
https://network.pivotal.io/
https://network.pivotal.io/
https://aws.amazon.com/quickstart/architecture/pivotal-cloud-foundry/
https://aws.amazon.com/rds/

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The deployment guide will walk you through the process of creating the required Tanzu Network

account and Route 53 Hosted DNS Zones. AWS Certificate Manager (ACM) makes requesting the

required certificates very simple.

Once these three steps are complete, you will be ready to launch the CloudFormation stack which

builds out Tanzu Application Service in your AWS account.

After Tanzu Application Service (TAS) is running in your AWS account, you’ll be ready to integrate the

AWS Service Broker for VMware Tanzu. With the Service Broker deployed, development teams can

provision and expose native AWS services to their application workloads running in Cloud Foundry

directly via the application platform. This could be TAS running applications on AWS via the Service

Broker (catering for faster modernization and cloud services adoption), or applications running on TAS

on-premises and consuming AWS services running in the cloud.

The Service Broker provides multi-account provisioning, allowing development teams to take

advantage of account-level segregation for project and cost management. A common and

recommended practice is to use separate accounts for development and production workloads. The

Broker can be configured to provision to either, depending on use case.

Through the Broker, service plans build in best practices for high availability, encryption, and data

retention. Customers can use configurable overrides to cater for specific use cases, and can customize

the CloudFormation template in a private catalog to meet their specific business requirements.

The Service Broker provides a powerful, elegant way to interact with add-on services: with just a few

commands, developers can bind their apps to over a dozen AWS services. This kind of convenience

helps customers go faster and improve business outcomes with differentiated software.

https://aws.amazon.com/certificate-manager/

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Now let’s get our hands dirty!

Tanzu Application Service on AWS Cloud Quick Start

First, follow the Tanzu Application Service Quick Start Reference Deployment guide to deploy

the Pivotal Quick Start and Service Broker into the Oregon us-west-2 region.

Once that is complete, you can install and configure the AWS Service Broker in TAS. The broker uses a

DynamoDB table as a persistent store for service instances, and as a distributed cache/lock. To create

the table, run following command from the AWS CLI:

Bash

 aws dynamodb create-table --attribute-definitions \

 AttributeName=id,AttributeType=S AttributeName=userid,AttributeType=S \

AttributeName=type,AttributeType=S --key-schema AttributeName=id,KeyType=HASH

\

 AttributeName=userid,KeyType=RANGE --global-secondary-indexes \

'IndexName=type-userid-

index,KeySchema=[{AttributeName=type,KeyType=HASH},{AttributeName=userid,KeyT

ype=RANGE}],Projection={ProjectionType=INCLUDE,NonKeyAttributes=[id,userid,ty

pe,locked]},ProvisionedThroughput={ReadCapacityUnits=5,WriteCapacityUnits=5}'

\

 --provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=5 \

 --region us-east-1 --table-name awssb

The Broker can be configured to use AWS Identity and Access Management (IAM) keys; however, we

recommend making use of IAM roles, which can be attached to the cluster using an instance profile at

launch.

https://aws-quickstart.s3.amazonaws.com/quickstart-pivotal-cloudfoundry/doc/pivotal-cloud-foundry-on-the-aws-cloud.pdf
http://aws.amazon.com/iam

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

The following is an example IAM policy to allow the Broker to interact with CloudFormation,

DynamoDB, and other services. This policy should be attached to either an IAM user or role. If using a

role, the role will need to be associated with the nodes with an instance profile.

Service User/Role

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

 "cloudformation:*",

 "ssm:*",

 "dynamodb:*",

 "s3:*"

],

 "Resource": [

 "*"

],

 "Effect": "Allow"

 },

 {

 "Action": [

 "iam:PassRole"

],

 "Resource": [

 "arn:aws:iam::*:role/AWSServiceBrokerCFNRole"

],

 "Effect": "Allow"

 }

]

}

The Service Broker use a CloudFormation service role, which will supply the required permission to the

Broker to provision and manage the AWS services provided through the service plans. Caveat: At the

time of writing, the Broker uses a CloudFormation Service role. After an update expected later this

year, it will instead use the IAM User or Role shown above. Check the Service Broker documentation

for the current status.

In either case, the Service Broker has the permission needed to provision and control resources instead

of providing access to specific teams. You can control which teams are able to interact with which

Service Broker service plans via the Cloud Foundry role-based access controls.

Below is an example of a broad IAM policy which would enable all current service plans. This can be

scoped down if only specific services are required:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Action": [

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

 "cloudformation:*",

 "iam:*",

 "kms:*",

 "ssm:*",

 "ec2:*",

 "lambda:*",

 "athena:*",

 "dynamodb:*",

 "elasticache:*",

 "elasticmapreduce:*",

 "rds:*",

 "redshift:*",

 "route53:*",

 "s3:*",

 "sns:*",

 "sqs:*",

 "polly:*",

 "lex:*",

 "translate:*",

 "rekognition:*",

 "kinesis:*"

],

 "Resource": [

 "*"

],

 "Effect": "Allow"

 }

]

}

Install the AWS Service Broker for VMware Tanzu

Once the roles and DynamoDB table have been created, we can download and install the Broker. The

AWS Service Broker now being listed on Tanzu Network is greatly beneficial For Customers who have

corporate policies and security requirements stating that add-ons to Cloud Foundry foundations have

to come from a trusted validated sources such as Tanzu Network.

In this example, I will be using the latest version of the AWS Service Broker for VMware Tanzu. First we

have to go login into the Tanzu Network. Search for the AWS Service Broker for VMware Tanzu.

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

At the time of writing this Release 1.0.2 was available. Click on the download button on the bottom

left of the screen.

Once downloaded the tile can be installed via the Tanzu Application Service Ops manager console as

follows:

1. Connect to ops manager https://opsman.<YOUR CF DOMAIN >,

2. Click on Import Product on the top left.

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

3. Browse to the downloaded Service Broker tile.

4. The new tile install will appear on the left.

5. Click the + symbol to install the tile.

Once the Service Broker is installed, there are a few configuration steps which need to be completed.

Click on the Service Broker tile, and select Settings.

If you are using an ec2 instance role attached to the Broker hosts, specify “use-role” as the value for

both the AWS Access Key ID and AWS Secret Access. Otherwise, specify the credentials for the user. In

this example, we’ll create an IAM user and attach the policy described above, then provide the Key ID

and access key for that user in this configuration step.

Fill in the configuration parameters:

 AWS Region: this is the default region for the broker to deploy services into, and must match

the region that the DynamoDB table created above (this will be decoupled in an upcoming

update).

 AWS CloudFormation Role ARN: specify the ARN for the CloudFormation Role.

 Amazon S3 Bucket: specify awsservicebrokeralpha

 Amazon S3 Key Prefix: specify pcf/templates/

 Amazon S3 Region: specify us-west-2

 Amazon S3 Key Suffix: specify -main.yaml

 Amazon DynamoDB table name: specify awssb

Click Save.

Now Apply Changes. Once complete, the tile will change to green.

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

At this point, we have deployed Tanzu Application Service into an AWS account, and installed and

configured the Service Broker.

Example Application

Now let’s deploy a simple example application integrated with the Broker. This application will

consume Amazon Polly, provisioned through the AWS Service Broker.

Download the CF CLI. I am using an AWS Cloud9 developer IDE, so I will be adding the YUM repo to

my list of repositories:

Bash

sudo wget -O /etc/yum.repos.d/cloudfoundry-cli.repo

https://packages.cloudfoundry.org/fedora/cloudfoundry-cli.repo

 sudo yum install cf-cli

Clone the AWS Service Broker Polly Application:

Bash

 git clone https://github.com/rniksch/aws-service-broker-polly-sample.git

Change dir into the sample app folder:

Bash

 cd aws-service-broker-polly-sample/

Login to the Apps Manager using the CF CLI:

Bash

 cf login -a https://api.sys.<YOUR CLOUD FOUNDRY DOMAIN> -u admin \

 --skip-ssl-validation

Please note that this may not be the same password as the admin for the Cloud Foundry ops manager.

If you are not sure of the password, you can collect it through this process:

1. Log in into the ops manager console:

2. https://opsman. <YOUR CLOUD FOUNDRY DOMAIN>

3. Select the Tanzu Application Service tile,

4. Select the Credentials tab,

5. Scroll down to UAA Admin Credentials,

6. Click on the link to your credential.

7. This will load a JSON payload with the password in it.

For this example, I have an existing Org called Blog and space called Polly.

First we will deploy one of the Service Broker plans, the Polly service.

https://aws.amazon.com/polly/

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Here’s how to get a list of all available Service plans:

cf marketplace

The following command will deploy the AWS polly service via the Service Broker:

Bash

 cf create-service polly default blogpolly

While the Service is deploying, let’s push the sample application:

Bash

 cd aws-service-broker-polly-sample/

 cf push

Connecting to the URL of the pushed application will fail – the application is told to connect to

Amazon Polly, but at this stage there is no binding between the Amazon Polly service we have created

and the application.

So let’s create that binding:

Bash

 cf bind-service pollysample blogpolly

We will need to restart the application for this to take effect:

Bash

 cf restage pollysample.

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Get the URL for the application and test if it is working as expected:

Bash

 cf app pollysample

Copy the URL shown next to Routes into a browser.

This should load a black screen, with a play button that will convert the text in the app to audio via

the AWS Polly Service.

It is important to note that at no point did the developer have to wait for a cloud or ops team to

deploy the AWS service and provide connection details such as endpoint or credentials, at no point

was the developer required to leave the developer interface and switch context to an AWS web

console, and no in-depth understanding of the service was required.

Using the AWS Tanzu Application Quick Start and the AWS Service Broker, you can accelerate your

deployment of Cloud Foundry into your AWS accounts, and build scalable, agile, elastic applications

consuming native cloud services – more quickly, with less effort. Don’t just modernize, enjoy the ride

with the AWS Service Broker!

We look forward to seeing you contribute to the AWS Service Broker and Quick Start projects.

https://aws.amazon.com/partners/servicebroker/
https://github.com/awslabs/aws-servicebroker
https://github.com/aws-quickstart/quickstart-pivotal-cloudfoundry

