
Spring for
Architects

@JakubPilimon
Jakub Pilimon

@ntschutta
ntschutta.io

Nathaniel Schutta

https://tanzu.vmware.com/
content/ebooks/thinking-

architecturally

https://tanzu.vmware.com/content/ebooks/thinking-architecturally
https://tanzu.vmware.com/content/ebooks/thinking-architecturally
https://tanzu.vmware.com/content/ebooks/thinking-architecturally

https://tanzu.vmware.com/
content/ebooks/responsible-

microservices-ebook

https://tanzu.vmware.com/content/ebooks/responsible-microservices-ebook
https://tanzu.vmware.com/content/ebooks/responsible-microservices-ebook
https://tanzu.vmware.com/content/ebooks/responsible-microservices-ebook

It used to be so simple.

You had a monolith. Maybe two.

You released new
versions semi annually.

Your team all worked on
the same floor.

Or at least within walking distance.

But that isn’t the case today is it?

Now you have dozens, hundreds…
maybe thousands of services.

New versions drop daily.

Your team is scattered
around the globe.

Architecting was never easy!

Now? Massively distributed apps
with geographically dispersed teams.

We are spread thin.

Can’t be everywhere at all times!

We can’t be involved
with every decision.

We must empower our teams.

Distributed decision making.

We can establish principles.

Leverage the power of defaults.

Behavioral Economics…

Powerful enough to earn
Richard Thaler a Noble Prize.

–Richard Thaler

“…if you want to get somebody
to do something, make it easy.”

https://www.mckinsey.com/industries/public-and-social-sector/our-insights/
nudging-the-world-toward-smarter-public-policy-an-interview-with-richard-thaler

https://www.mckinsey.com/industries/public-and-social-sector/our-insights/nudging-the-world-toward-smarter-public-policy-an-interview-with-richard-thaler
https://www.mckinsey.com/industries/public-and-social-sector/our-insights/nudging-the-world-toward-smarter-public-policy-an-interview-with-richard-thaler

Use that to *our* advantage.

Wait? What?

Architects must wield the
power of defaults.

Make the right choice
the easy choice.

Distributed systems
have similar needs.

Monitoring. Circuit breakers.
Consumer Driven Contracts.

Gateways. Streams.
Externalized configuration.

Functions. Service discovery. Load
balancing. Documentation.

We can’t afford to reinvent the
wheel on every project.

Spring frees architects to focus
on critical design decisions.

While empowering teams to
solve critical business problems.

There are many ways to fail with
distributed applications.

Spring is here to help you, your
teams and your applications.

Help everyone sleep better at night.

Ultimately, it is about delivering
business value to production.

What is cloud
Native?

https://mobile.twitter.com/as_w/status/1090763452241534976

https://mobile.twitter.com/as_w/status/1090763452241534976

Applications designed to take
advantage of cloud computing.

Fundamentally about how we
create and deploy applications.

Cloud computing gives us
some very interesting abilities.

Scale up. Scale down. On demand.

Limitless compute.*

* Additional fees may apply.

Said fees can be…opaque.

https://mobile.twitter.com/whereistanya/status/1080864493108776961

https://mobile.twitter.com/whereistanya/status/1080864493108776961

https://mobile.twitter.com/jpetazzo/status/1227638126602080256

https://mobile.twitter.com/jpetazzo/status/1227638126602080256

https://mobile.twitter.com/paulbiggar/status/1228385370439467009

https://mobile.twitter.com/paulbiggar/status/1228385370439467009

Cloud native isn’t just an
architectural pattern.

Combination of practices,
techniques, technologies.

Agile development.

Continuous delivery.

Automation.

Containers.

Microservices.

Functions.

Changes our culture.

DevOps.

Infrastructure is a different
game today isn’t it?

We’ve seen this massive shift.

Servers used to be home grown.

Bespoke. Artisanal.

Spent days hand crafting them.

Treated them like pets…

Did whatever it took to keep
them healthy and happy.

Servers were a heavily
constrained resource.

They were really expensive!

Had to get our money’s worth…

Thus was born app servers.

Put as many apps as
possible on a server.

Maximize the return on investment.

But that has some
unintended side effects.

Shared resources.

One application’s bug could
take down multiple apps.

Coordinating changes hurts.

“Your app can’t get this feature
until all other apps are ready.”

Currency === 18 months of
freezes, testing, frustration.

Organizations ignored currency
issues…pain wasn’t “worth it”.

–Yoda

“Fear is the path to the dark side.
Fear leads to anger. Anger leads
to hate. Hate leads to suffering.”

#YodaOps

Move code from one
server to another…

Worked in dev…but not test.

Why?!?

The environments are
the same…right?

“Patches were applied in a
different order…”

Can I change careers?

Things started to change.

Servers became commodities.

Linux and Intel chips replaced
custom OS on specialized silicon.

https://mobile.twitter.com/linux/status/936877536780283905?lang=en

https://mobile.twitter.com/linux/status/936877536780283905?lang=en

Prices dropped.

Servers were no longer the
constraining factor.

People costs eclipsed
hardware costs.

Heroku, AWS, Google App
Egine, Cloud Foundry, Azure.

Shared servers became a liability.

Treat them like cattle…when
they get sick, get a new one.

New abstractions.

Containers and PaaS
changed the game.

Package the app up with
everything it needs.

Move *that* to a
different environment.

Works in dev? You’re testing the
exact same thing in test.

So. Much. Win.

Your app needs a spiffy
new library? Go ahead!

It doesn’t impact any other app
because you are isolated.

Moves the value line.

Less “undifferentiated heavy lifting”.

Changes development.

Always be changing.

Run experiments. A/B testing.

Respond to business changes.

Deliver in days not months.

https://mobile.twitter.com/ntschutta/status/938109379995353088

https://mobile.twitter.com/ntschutta/status/938109379995353088

Speed matters.

Disruption impacts every business.

Your industry is not immune.

Amazon Prime customers can
order from Whole Foods.

Some insurance companies
view Google as a competitor.

We’re all technology
companies today.

12 factors

Twelve Factor App.

https://12factor.net

https://12factor.net

Characteristics shared by
successful apps.

At least at Heroku.

1. One codebase in version control,
multiple deploys.

2. Explicitly define your dependencies.
3. Configuration must be separate from

the code.
4. Backing services are just attached

resources.
5. Build, release, run.

6. Stateless - share nothing.
7. Export services via port binding.
8. Scale via process.
9. Start up fast, shut down gracefully.
10.Dev/Prod parity.
11.Logs as event streams.
12.Admin tasks run as one off

processes.

I. One codebase in version
control, multiple deploys.

Version control isn’t
controversial. Right?!?

Sharing code? It better
be in a library then…

II. Explicitly define your
dependencies.

Do not rely on something just
“being there” on the server.

If you need it, declare it.

III. Configuration must be
separate from the code.

The things that vary from
environment to environment.

Could you open source
that app right now?

IV. Backing services are just
attached resources.

Should be trivial to swap out a
local database for a test db.

In other words, loose coupling.

V. Build, release, run.

Deployment pipeline anyone?

Build the executable…

Deploy the executable with the
proper configuration…

Launch the executable in a
given environment.

VI. Stateless - share nothing.

https://mobile.twitter.com/stuarthalloway/status/1134806008528809985

https://mobile.twitter.com/stuarthalloway/status/1134806008528809985

State must be stored via some
kind of backing service.

In other words, you cannot rely
on the filesystem or memory.

Recovery. Scaling.

VII. Export services via port binding.

App exports a port, listens for
incoming requests.

localhost for development,
load balancer for public facing.

VIII. Scale via process.

In other words, scale horizontally.

IX. Start up fast, shut
down gracefully.

Processes aren’t pets,
they are disposable.

Processes can be started (or
stopped) quickly and easily.

Ideally, start up is seconds.

Also can handle
unexpected terminations!

X. Dev/Prod parity.

From commit to production
should be hours…maybe days.

Definitely not weeks.

Developers should be involved
in deploys and prod ops.

Regions should be identical. Or
as close as possible to identical.

Backing services should be the
same in dev and prod.

Using one DB in dev and
another in prod invites pain.

XI. Logs as event streams.

Don’t write logs to the filesystem!

It won’t be there later…

Write to stdout.

Stream can be routed any
number of places.

And then consumed via a
wide variety of tools.

XII. Admin tasks run as
one off processes.

Database migrations for instance.

REPL for the win.

Run in an identical environment
to the long running processes.

Your legacy apps will
violate some factors.

Maybe all 12!

In general…

II. Explicitly define your
dependencies.

Probably one of the
harder ones to satisfy.

Do we really need this library?

“It works, don’t touch it.”

III. Configuration must be
separate from the code.

Many an app has
hardcoded credentials.

Hardcoded database connections.

VI. Stateless - share nothing.

Also can be challenging.

Many apps were designed
around a specific flow.

Page 2 left debris for Page 3!

“Just stash that in session”.

IX. Start up fast, shut
down gracefully.

Many apps take way
too long to start up…

Impacts health checks.

X. Dev/Prod parity.

Environments should be consistent!

Shorten code to prod cycle.

“It worked in test…”

Do your applications have to be
fully 12 factor compliant?

Nope.

Is it a good goal?

Sure.

But be pragmatic.

Certain attributes lessen the
advantages of cloud.

Long startup time hurts elastic
scaling & self healing.

Think of it as a continuum.

12 Factor Compliance

Benefits of Cloud Deployment

Developers also talk
about 15 factor apps.

aka Beyond the Twelve-Factor App.

https://content.pivotal.io/blog/beyond-the-twelve-factor-app

https://content.pivotal.io/blog/beyond-the-twelve-factor-app

However you define it…

To maximize what
the cloud gives us…

Applications need to be
designed properly.

Legacy applications will fall short.

Opportunistically refactor!

Building greenfield?

Go cloud native!

Don’t build legacy.

What is
Spring?

Integration framework.

Combines a lot of different
things together.

Consistent programming model.

Simplify Java development.

Supports other JVM languages,
Kotlin and Groovy.

Family of projects built atop the
Spring Framework.

Provides support for any number
of application architectures.

Message driven. Web applications.
Reactive. Microservices.

Spring provides choices.

Want to switch out your
message broker? No problem.

Time for a different datastore?
No worries.

Backwards compatible.

Range of JDK versions,
minimize breaking changes.

Thoughtful APIs.

User centered API design.

High code quality.

Clean code with top
notch documentation.

Mature - first release in mid 2003.

Built to simplify JEE
development.

Deliver the promise of EJB
without…the overhead.

POJO - Plain Old Java Object.

Inversion of Control aka
Dependency Injection.

Loose coupling.

Declarative programming.

Eliminate boilerplate.

Has grown considerably…

Spring Boot.

Opinionated view of Spring,
simplifies building apps.

Not an application server.

Embeds a servlet container.

Doesn’t implement Java specs,
configures beans that do.

It is not a code generator.

Automatically configures beans.

Frees you from
boilerplate configuration.

Spring Initializr.

Pick your language, build
preferences, Boot version.

Set the project metadata, select
packaging and Java level.

Allows you to select the
dependencies your project needs.

Generates a starter project.

Don’t like GUIs? There is a CLI.

https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-cli.html

https://docs.spring.io/spring-boot/docs/current/reference/html/spring-boot-cli.html

Open the project in your
favorite IDE and away you go!

Spring Cloud.

Distributed applications share a
number of patterns.

Spring Cloud is an umbrella
project with out the box solutions.

Useful defaults for Cloud
Native applications.

Cloud agnostic.

Generate a project via
start.spring.io

http://start.spring.io

Externalized configuration.

Integration with various
Netflix components.

Security. Distributed tracing.
Event driven applications.

Deployment pipelines. Service
Discovery. Connectors.

And on and on…

We’ll talk more about this topic!

Spring Data.

Spring based model
for data access.

Simplify data access regardless
of the datastore.

Relational, non-relational, cloud
based, map-reduce.

Broad support for a
variety of databases.

We could go on and on…

In fact there are full talks
just on the topic!

Documentation

Documentation?
You’re kidding right?

I know what some of
you are thinking…

I don’t have time for all this.

We need to MOVE FAST.
And break things…

We’re Agile. With a capital A.

Besides, “the documentation is
useless” #amirite?

https://twitter.com/ntschutta/status/1314636196270739457

https://twitter.com/ntschutta/status/1314636196270739457

That is not, in fact, an
inviolable requirement.

Documentation doesn’t have to
be high ceremony.

Should answer basic questions!

What does your service do?

How does it work?

What does it depend on?

Golden rule!

Do it for those that come after you.

Don’t forget, sometimes *you* are
the person that comes after you!

How long does it take for a new team
member to be productive? Weeks?

Months?

Solid onboarding guide.

Make sure it is updated.

Documentation should
be easy to find.

Probably a website/wiki.

Updating the wiki should be
part of the developer workflow.

Consider a simple (low
ceremony) template.

Description - what does your
service do? Don’t skimp here.

An architectural diagram or three.

Contact information as well as
the on call rotation.

Links to helpful things like the repo,
dashboard link, on call book.

FAQ.

Onboarding/development guide.

Coding standards.

Development pipeline.

Glossary.

Whatever helps the
team understand.

Everyone should “get it” and be able
to describe it. So have them do it.

Spring can help!

Word processors don’t lend
themselves to a pipeline.

Takes hand crafted Asciidoctor
(or Markdown) text…

Combined with autogenerated
snippets from test code.

Output is HTML, style away.

And deriving documentation
from tests keeps it up to date.

Your developers focus on
describing requests & responses.

Change implementation details
to your heart’s content!

Shouldn’t be a static thing!

Documentation should be reviewed
along with the architecture.

Monitoring

Monitoring is vital to a thriving
distributed architecture.

Four components to monitoring.

Logging.

What would you say my
service is doing?

Log anything that is useful.

Just don’t put in any personally
identifying information (PII).

Ever.

Some things alone aren’t PII but
when combined with other items…

Tracing can be difficult.

Can’t just put in a breakpoint
and step through the code…

Calls bounce between 5 or
10 (or more) services.

Correlation IDs help.

Speaking of which…

Auto-configured for
distributed tracing!

Covers spans, sampling
and key:value pairs.

Adds trace and span IDs and to
stock ingress & egress points.

Instruments common
ingress & egress points.

Generates Zipkin compatible
traces if desired.

Basically add Sleuth to
your classpath…

And your Boot app can
generate trace data!

Dashboards.

View the health of a service.

Metrics should be displayed on
a dashboard of some sort.

But we should be alerted when
things start to go wonky.

Alerting.

A key metric is out of band.

Allows us to detect an issue and fix it
before our customers even notice.

Pager duty.

Must be sustainable.

Provide clear, concise on call
documentation.

– Archilochus

“We don't rise to the level of
our expectations, we fall to

the level of our training.”

https://www.mckinsey.com/industries/public-and-social-sector/our-insights/nudging-the-world-toward-smarter-public-policy-an-interview-with-richard-thaler

Vital that we think about just
what we should be monitoring.

What *is* a key metric?

Some pertain solely to the
infrastructure our service runs on.

CPU utilization, RAM utilization,
threads, database connections…

These often impact more than
just our service.

Others key metrics are
specific to our service.

Additionally we need to know the
availability, latency, response time…

Basically anything that we identified
earlier as part of our SLO.

Monitor errors and
exceptions as well.

Identify normal, warning and
critical thresholds for your metrics.

Can be hard to figure out early on.
Need a certain amount of history.

Not just a prod thing. We
need to monitor staging.

Validates the monitors.

Metrics should be displayed on
a dashboard of some sort.

But we should be alerted when
things start to go wonky.

We shouldn’t be staring at our
dashboards all day!

Alert on all of our key
metrics, SLOs etc.

Absence of a key metric is also
an alertable offense!

Alerts should be actionable.

Alerts should be urgent.

Alerts should require
human intervention.

System can “fix” itself? Not an
alert - monitor and/or report.

https://landing.google.com/sre/book.html

https://landing.google.com/sre/book.html

Four Golden Signals.

https://landing.google.com/sre/book/chapters/monitoring-
distributed-systems.html#xref_monitoring_golden-signals

https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html#xref_monitoring_golden-signals
https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html#xref_monitoring_golden-signals

Latency - how long does it take
to service a request.

Traffic - level of demand on the
system. Requests/second. I/O rate.

Errors - failed requests. Can be
explicit, implicit or policy failure.

Saturation - how much of a
constrained resource is left.

Important to consider the
sampling frequency.

High resolution can be costly.

Aggregate data.

Number of tools from Wavefront
to Dynatrace to New Relic.

Spring Boot Actuator!

https://docs.spring.io/spring-boot/docs/current/
reference/html/production-ready-metrics.html

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html

Metrics can’t afford to be
hand-rolled solutions.

Take advantage of Actuator’s
built in endpoints.

You can create your own
custom endpoints as well.

Takes time to get monitoring right.

Do you even SRE?

Beware the metric that is
easy to measure…

Might not be meaningful. Sorry.

Also key to understand
the business drivers.

What could cause a
spike in demand?

How does that translate
to specific services?

Be realistic!

We can’t all be a third
of internet traffic!

Fault Tolerance

Distributed systems are not
islands unto themselves.

Services fail.

Failures, uh find a way.

Our customers don’t care why.

You cannot prevent failure…but
you can be prepared for it.

How should we react?

Error message?

Call a backup service?

Do we need to cache data?

Do we return a default answer?

https://twitter.com/KentBeck/status/596007846887628801

https://twitter.com/KentBeck/status/596007846887628801

The circuit breaker pattern.

https://martinfowler.com/bliki/CircuitBreaker.html

https://martinfowler.com/bliki/CircuitBreaker.html

Originally described by
Michael Nygard.

Closed
on call / pass through

call succeeds / reset count
call fails / count failure
threshold reached / trip

breaker

Half-Open

on call / pass through
call succeeds / reset
call fails / trip breaker

Open
on call / fail

on timeout / attempt reset

trip
breaker

reset

trip
breaker

Circuit breaker watches the calls.

Once they exceed a failure
threshold, the circuit is opened.

Redirects to the
fallback mechanism.

Periodically checks to see if the
service is repaired.

If so, circuit is closed.

Multiple circuit breaker
implementations to pick from.

Spring Cloud Circuit
Breaker to the rescue!

Consistent API, allows developers
to pick the implementation.

Supports Netflix Hystrix,
Resilience4j, Sentinel, Spring Retry.

Add the proper starter to the
class path, call the factory…

You can now inject the circuit
breaker wherever you see fit.

Each circuit breaker can be
individually configured.

Can also create default
configuration for all circuit breakers.

Free to change failure thresholds,
slow call thresholds…

Minimum number of calls,
sliding window size…

Circuit breakers are vital for a
healthy micro(services)biome.

It isn’t hard to add!

Your customers will thank you…

And you can avoid 3 AM pages.

SC Netflix

Should be obvious …distributed
systems have similar needs.

Common patterns!

Service discovery.

Circuit breaker (we
already touched on this!)

Routing. Client side load balancing.

You know who has a lot of
distributed app experience?

Netflix.

Who has built out several OSS
components to help?

Netflix.

Add some annotations and
you’re good to go!

Integration of Netflix
OSS into Boot apps.

Eureka.

Service discovery is a key part
of distributed applications.

Services come and go, they’re
scaled up and down.

Don’t try to configure by hand!

Two pieces - Eureka Server
and Eureka Client.

Eureka Server can be
configured to be HA.

Default is to run multiple
instances and peer them.

Can also run standalone.

Clients register with Eureka.

Provide common info: port,
host, health check, etc.

Put the Eureka client starter on the
classpath & apps auto register.

Eureka gets a regular heartbeat
from the service instances.

Heartbeat fails? Removed
from the registry.

Uses the default /info and
/health actuator endpoints.

Can be configured to register
secure applications.

It can take up to 3 heartbeats to
get everyone on the same page.

You can shorten the default
heartbeat time period.

EurekaClient can then be use to
find service instances.

There are alternative clients.

Running in multiple zones?

You can configure it to use
services in the same zone.

We don’t just need service
discovery though do we?

Ribbon - client side load balancer.

Works with (or without) Eureka.

Add the starter.
Bet you saw that coming.

External properties configured
via Boot configuration files.

You can create default
configurations…

Can also customize by setting
properties by environment.

You can also directly
access the Ribbon API.

Configuration can be lazy
loaded on first request.

Or set to load it eagerly.

Wait? Aren’t parts of Spring Cloud
Netflix in maintenance mode?

SC Stream

Many distributed apps utilize
event driven architectures.

Wait. What do *you*
mean by events?

Depends on who you ask!

In the eye of the beholder?

There are multiple event patterns.
Which one are you using?

Event notification.

Something happens, source
system shouts into the void.

“A new customer signed up!”

Event emitter doesn’t care
what happens next.

Highly asynchronous.

The 0th Law of Computer Science:

High cohesion, low coupling…

But there are downsides.

What would you say you
do around here?

Hard to debug, difficult to
reason about the system.

Monitoring, monitoring, monitoring.

Easy to lose sight of the flow.

Event-carried state transfer.

Event includes details.

Customer address updated and
here is the new address.

Event subscribers don’t have to ask.

Aka Tell Don’t Ask.

You know, object oriented
programming 101.

Reduced latency.

Lower overhead on the
source systems.

Lots of data thrown around.

And receivers have to handle state.

Event sourcing.

Record every state change.

Event store is the source of truth.

Did someone say Kafka?

Strong audit log. Easy to
recreate history.

Run hypotheticals.

Evolving schema can hurt.

Challenging to replay when we
interact with outside systems.

CQRS.

Command Query
Responsibility Segregation.

One data structure for reads,
another for writes.

Not really event driven per se.

But often combined with.

Don’t just take my word for it…

Which approach is right for you?

https://twitter.com/KentBeck/status/596007846887628801

https://twitter.com/KentBeck/status/596007846887628801

All about trade offs!
But you knew that.

By the way, this is usually
when someone asks…

“How do distributed transactions
work in the cloud?”

They don’t!

It’s like the real world.

You buy a shirt at a store.
There is a return policy.

They don’t keep the transaction
open until the return period expires!

The sale is committed!

You return the shirt?

Compensating transactions!

Put the shirt back into inventory.
Issue you a credit.

Same thing for us.

OK, so how does Spring help us
out when it comes to events?

Spring Cloud Stream.

Here’s the thing.

As architects, we want flexibility.

One constant - change.

Architecture is often defined as the
decisions that are hard to change.

Or the decisions we
wish we got right.

But we *know* things will change!

We don’t want to paint
ourselves into a corner…

SCS lets you swap brokers.

Use what is right for your team.

Supports what you’d expect.

Kafka, RabbitMQ, Kinesis plus
various partner maintained bits.

Provides a binder to the
external brokers.

Middleware neutral.

Also includes a test binder
for integration testing.

You can alway build
your own binder…

Destination binder connects
you to your messaging system.

Handles the boilerplate
configuration bits.

Bindings are the bridge between
your app and the broker.

Your functions then consume
and produce messages.

There are binder specific
health indicators.

And so very much more!

Contracts

Services evolve.

To be expected!

How do you avoid breaking
changes to consumers?

You might not even know who
is calling your service!

Consumer Driven Contracts.

https://martinfowler.com/articles/consumerDrivenContracts.html

https://martinfowler.com/articles/consumerDrivenContracts.html

Contracts can be written in
Groovy or YAML.

Add the Spring Cloud Contract
Verifier dependency.

Running a clean build will
generate test stubs.

You implement the test code.

Publish the stub artifacts along
with your production code.

Living documentation!
Evolves with your services.

Consumers leverage Spring
Cloud Contract Stub Runner.

Add the dependency and
install the producer stubs.

Add the proper annotation to
your test class.

Your test will get a stubbed
version of the HTTP response.

Reactive

Remember Moore’s Law?

“the number of transistors in a [chip]
doubles about every two years.”

Processor clock speeds
got faster and faster.

A new chip would be twice as
fast as a six month old model.

Today? Not so much..but, we
have more cores.

That reality changes things for
how we architect systems.

Take advantage of the cores!

Many apps need high
throughput and low latency.

Non-blocking, asynchronous
applications to the rescue!

Do more with fewer resources.

Spring gives you two stacks:
Reactive and Servlet.

Spring MVC builds on
the Servlet API.

Synchronous, blocking IO.

Aka - the traditional approach.

And that’s fine!

Still fits a number of use cases!

But we do have options today…

WebFlux is non-blocking, taking
advantage of multi-core processors.

Designed for massive
concurrent connections.

Project Reactor interacts with
functional API of Java.

Twp APIs: Flux and Mono.

Back pressure ready,
fully non-blocking.

Low memory footprint, tens of
millions of messages per second.

Datastores have evolved too.

There are a set of
reactive repositories.

Spring Data has native support for
Mongo, Redis and Cassandra.

Others are supported via R2DBC.

You may not always need
reactive architectures…

But when you do,
Spring has you covered!

SC Gateway

A Spring approach to the
gateway problem!

Based on Spring 5,
Reactor and Boot 2.

Non blocking IO.

Backpressure.

Event loop!

Spring WebFlux.

Lives along side Spring MVC.

Non-blocking, reactive.

Streams!

HandlerMapping - what code is
going to handle this request.

WebFilter - manipulate the
request/response.

Predicate - test some
aspect of the request…

And determine whether to route it.

ServerWebExchange: access all
parts of the http request/response.

Configure routes in Java, YAML
or via repositories.

Can route on path, host,
headers, parameters…

Anything in the request.

Filters!

Rewrite path.

Add or remove request/
response headers.

Rate limiting.

Circuit Breaker integration.

With so many options, why should
I use Spring Cloud Gateway?

It is programmer centric routing.

Antithesis of tickets with a side
of tickets. And more tickets.

Would you rather
refresh a configuration?

Or fill out another ticket?

Java centric, Spring centric,
configuration centric.

You are in control.

Instead of one of these…

You can craft your own…

Except *you* decide what tools,
blades etc. you want.

Lightweight, simple.

Use it as you will. You aren’t
forced down a certain path.

Think of it as an ESB with
inversion of control.

It is not a SaaS, it is a tool.

You can just “run” SC Gateway.

It is just an app.

Developer focussed.

You know how to build
and run applications.

You build it, you push it.

It is in your hands, not some
random enterprise group.

Anything you could do in Zuul 1
is supported in SC Gateway.

But what about performance?

There was a benchmark
published in December 2017.

SC Gateway was not officially
released at that time.

There are no performance
issues today.

Many large companies rely on it.

Spring cloud
Kubernetes

Did someone say Kubernetes?

Spring Cloud Kubernetes!

First off, not required.

Boot is ready to roll on a multitude
of popular cloud options.

Spring Boot will auto
detect Kubernetes.

You can export the K8s
probes via Actuator.

Liveness and Readiness.

Just point your configuration to
the actuator endpoints.

What does Spring Cloud
Kubernetes give me?

Kuberentes awareness.

DiscoveryClient
implementation.

PropertySource objects.

Client side load
balancing via Ribbon.

You are free to add
individual K8s starters…

Or pull in everything.

You can also use Spring to
extend Kubernetes.

Custom Resource Definition.

Evolving space!

Spring native

How fast is Spring?

Glad you asked!

The Spring team has always
prioritized performance.

And there are a number of
things you can tweak.

And now Spring Native.

Currently beta!

Allows you to compile to
GraalVM native images.

Nearly instant startup experience
and lower memory usage.

But longer build times and
fewer runtime optimizations.

Trade offs!

Native images have different
characteristics. That’s the point.

Ahead of time transformations.

Not everything can be inferred…

Useful for functions.

Lower overhead Microservices.

Supports Java and Kotlin.

Don’t forget. It is in beta.

Expect breaking changes.

Let me repeat that.
Expect breaking changes.

It isn’t easy to architect cloud
native applications.

Lot of moving parts.

Distributed architectures require
a fair amount of plumbing.

Spring can help!

Hopefully something here
caught your eye.

Remember…

Make the right choice
the easy choice.

How do you keep up with
everything happening in Spring?

What is your learning style?

Like videos?

Prefer to comment along to live
streams? We’ve got you!

Pick a day.

How about some
live online training?

On Twitter? So are we!

@springcentral

@starbuxman
@springbootbook

@mkheck

@kenkousen

@habuma

@SpringOne @BootifulPodcast
@SpringTipsLive

@ReactiveSpring
@springcloud

@SpringData

@SpringSecurity

@snicoll

@mariogray

@cote

@david_syer

@cppwfs

@JakubPilimon

@springjuergen

@MGrzejszczak

@michaelminella
@olga_maciaszek

@phillip_webb

@ryanjbaxter

@royclarkson

@scottyfred

@spencerbgibb

@bellalleb_bai

@Audrey_Neveu

@benbravo73
@fifthposition

@csterwa

@rob_winch

@violeta_g_g

@ntschutta@ciberkleid @tiffanyfayj

@ilayaperumalg

@madhurabhave23 @dturanski

@maciejwalkowiak

@smaldini

I’m sure I missed several…

And I am very sorry for that!

Follow away!

Prefer to read?

Not sure where to start?

Deep dive documentation?

Want some hands on coding?

Prefer to listen?

Rich ecosystem with a large,
thriving community.

Resources abound!

Ask questions!

Good luck!

Resources
✦ The Power of Suggestion: Inertia in 401(k) Participation and Savings Behavior

https://www.jstor.org/stable/2696456?seq=1
✦ What Is Spring?

https://springone.io/2020/sessions/what-is-spring
✦ Why Spring?

https://spring.io/why-spring
✦ spring initializr

https://start.spring.io
✦ The Beginner’s Guide To Spring Cloud

https://www.youtube.com/watch?v=aO3W-lYnw-o
✦ Spring in Action

https://www.manning.com/books/spring-in-action-sixth-edition

https://www.jstor.org/stable/2696456?seq=1
https://springone.io/2020/sessions/what-is-spring
https://spring.io/why-spring
https://start.spring.io
https://www.youtube.com/watch?v=aO3W-lYnw-o
https://www.manning.com/books/spring-in-action-sixth-edition

Resources
✦ Spring and Spring Boot Fundamentals

https://www.oreilly.com/learning-paths/learning-path-spring/9781492055334/
✦ Tanzu Developer Portal

https://tanzu.vmware.com/developer/
✦ Spring Cloud Circuit Breaker

https://spring.io/projects/spring-cloud-circuitbreaker
✦ Spring Cloud Circuit Breaker Guide

https://spring.io/guides/gs/circuit-breaker/
✦ Spring Tips: Spring Cloud Circuit Breaker

https://www.youtube.com/watch?v=s5-leUCti5o
✦ Spring Cloud Sleuth

https://spring.io/projects/spring-cloud-sleuth

https://www.oreilly.com/learning-paths/learning-path-spring/9781492055334/
https://tanzu.vmware.com/developer/
https://spring.io/projects/spring-cloud-circuitbreaker
https://spring.io/guides/gs/circuit-breaker/
https://www.youtube.com/watch?v=s5-leUCti5o
https://spring.io/projects/spring-cloud-sleuth

Resources
✦ Spring Boot Actuator

https://docs.spring.io/spring-boot/docs/current/reference/html/production-
ready-features.html

✦ Application Monitoring With Spring Boot Actuator
https://dzone.com/articles/application-monitoring-with-spring-boot

✦ Spring Tips: The Wavefront Observability Platform
https://spring.io/blog/2020/04/29/spring-tips-the-wavefront-observability-
platform

✦ Spring Boot Observability
https://www.youtube.com/watch?v=zGiBpUlg9mk

✦ Mastering Spring Boot's Actuator
https://www.youtube.com/watch?v=otcYECeFS6Y

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-features.html
https://dzone.com/articles/application-monitoring-with-spring-boot
https://spring.io/blog/2020/04/29/spring-tips-the-wavefront-observability-platform
https://spring.io/blog/2020/04/29/spring-tips-the-wavefront-observability-platform
https://www.youtube.com/watch?v=zGiBpUlg9mk
https://www.youtube.com/watch?v=otcYECeFS6Y

Resources
✦ Spring REST Docs

https://spring.io/projects/spring-restdocs
✦ If Hemingway Wrote JavaDocs

https://springone.io/post-event/sessions/if-hemingway-wrote-javadocs
✦ Documenting RESTful APIs with Spring REST Docs

https://www.youtube.com/watch?v=CaARz49u1Mc
✦ Spring Cloud Contract

https://spring.io/projects/spring-cloud-contract
✦ Spring Tips: Spring Cloud Contract

https://spring.io/blog/2017/10/25/spring-tips-spring-cloud-contract-http
✦ Consumer Driven Contract Testing with Spring Cloud Contract

https://www.youtube.com/watch?v=QHlhYQQa7bg

https://spring.io/projects/spring-restdocs
https://springone.io/post-event/sessions/if-hemingway-wrote-javadocs
https://www.youtube.com/watch?v=CaARz49u1Mc
https://spring.io/projects/spring-cloud-contract
https://spring.io/blog/2017/10/25/spring-tips-spring-cloud-contract-http
https://www.youtube.com/watch?v=QHlhYQQa7bg

Resources
✦ Spring Cloud Gateway

https://spring.io/projects/spring-cloud-gateway#overview
✦ Introducing Spring Cloud Gateway and API Hub for VMware Tanzu

https://springone.io/post-event/sessions/introducing-spring-cloud-gateway-
and-api-hub-for-vmware-tanzu

✦ Reactive Architectures with RSocket and Spring Cloud Gateway
https://www.youtube.com/watch?v=PfbycN_eqhg

✦ Spring Cloud Gateway for Stateless Microservice Authorization
https://www.youtube.com/watch?v=RRMO4oNptoQ

✦ Top tips for running Spring Boot applications on Kubernetes with Ollie Hughes
https://www.youtube.com/watch?v=R9mNUfvp8Dg

✦ Spring on Kubernetes Workshop
https://tanzu.vmware.com/developer/workshops/spring-on-kubernetes/

https://spring.io/projects/spring-cloud-gateway#overview
https://springone.io/post-event/sessions/introducing-spring-cloud-gateway-and-api-hub-for-vmware-tanzu
https://springone.io/post-event/sessions/introducing-spring-cloud-gateway-and-api-hub-for-vmware-tanzu
https://www.youtube.com/watch?v=PfbycN_eqhg
https://www.youtube.com/watch?v=RRMO4oNptoQ
https://www.youtube.com/watch?v=R9mNUfvp8Dg
https://tanzu.vmware.com/developer/workshops/spring-on-kubernetes/

Resources
✦ SpringOne Tour 2021: # Booternetes

https://www.youtube.com/watch?v=LfbU5xuR7Ck
✦ Spring on Kubernetes

https://spring.io/guides/topicals/spring-on-kubernetes/
✦ Getting Started with Spring Cloud Kubernetes

https://www.youtube.com/watch?v=u64jexEX_RY
✦ Spring Native documentation

https://docs.spring.io/spring-native/docs/current/reference/htmlsingle/
✦ Announcing Spring Native Beta!

https://www.youtube.com/watch?v=96n_YpGx-JU
✦ The Path Towards Spring Boot Native Applications

https://www.youtube.com/watch?v=Um9djPTtPe0

https://www.youtube.com/watch?v=LfbU5xuR7Ck
https://spring.io/guides/topicals/spring-on-kubernetes/
https://www.youtube.com/watch?v=u64jexEX_RY
https://docs.spring.io/spring-native/docs/current/reference/htmlsingle/
https://www.youtube.com/watch?v=96n_YpGx-JU
https://www.youtube.com/watch?v=Um9djPTtPe0

Resources
✦ How Fast is Spring?

https://www.youtube.com/watch?v=T22i3WAa6dI
✦ SpringDeveloper on YouTube

https://www.youtube.com/channel/UC7yfnfvEUlXUIfm8rGLwZdA
✦ SpringOne Tour

https://tanzu.vmware.com/developer/tv/springone-tour/
✦ Tanzu.TV Shows

https://tanzu.vmware.com/developer/tv/
✦ Spring.io

https://spring.io
✦ Spring Documentation

https://spring.io/projects

https://www.youtube.com/watch?v=T22i3WAa6dI
https://www.youtube.com/channel/UC7yfnfvEUlXUIfm8rGLwZdA
https://tanzu.vmware.com/developer/tv/springone-tour/
https://tanzu.vmware.com/developer/tv/
https://spring.io
https://spring.io/projects

Resources
✦ Spring Tips: Spring Cloud Loadbalancer

https://spring.io/blog/2020/03/25/spring-tips-spring-cloud-loadbalancer
✦ How to Live in a Post-Spring-Cloud-Netflix World

https://www.youtube.com/watch?v=mINNQ3zpRrE
✦ Service Registration and Discover

https://spring.io/guides/gs/service-registration-and-discovery/
✦ Spring Tips: Spring Cloud Stream

https://www.youtube.com/watch?v=HQ00E60kB6c
✦ Spring Tips: Spring Cloud Stream Kafka Streams

https://www.youtube.com/watch?v=YPDzcmqwCNo
✦ Streaming Processing and Testing with Spring Cloud Stream

https://www.youtube.com/watch?v=7QNkYqPcVpI

https://spring.io/blog/2020/03/25/spring-tips-spring-cloud-loadbalancer
https://www.youtube.com/watch?v=mINNQ3zpRrE
https://spring.io/guides/gs/service-registration-and-discovery/
https://www.youtube.com/watch?v=HQ00E60kB6c
https://www.youtube.com/watch?v=YPDzcmqwCNo
https://www.youtube.com/watch?v=7QNkYqPcVpI

Resources
✦ Spring Cloud Stream - demystified and simplified

https://spring.io/blog/2019/10/14/spring-cloud-stream-demystified-and-
simplified

✦ Spring Cloud Stream - Event Routing
https://spring.io/blog/2019/10/31/spring-cloud-stream-event-routing

✦ Reactive
https://spring.io/reactive

✦ Spring Tips and Reactive Spring
https://www.youtube.com/watch?v=_LR0Cxnn-kw

✦ Reactive Spring by Josh Long
https://www.youtube.com/watch?v=zVNIZXf4BG8

https://spring.io/blog/2019/10/14/spring-cloud-stream-demystified-and-simplified
https://spring.io/blog/2019/10/14/spring-cloud-stream-demystified-and-simplified
https://spring.io/blog/2019/10/31/spring-cloud-stream-event-routing
https://spring.io/reactive
https://www.youtube.com/watch?v=_LR0Cxnn-kw
https://www.youtube.com/watch?v=zVNIZXf4BG8

Thank you!

@JakubPilimon
Jakub Pilimon

@ntschutta
ntschutta.io

Nathaniel Schutta

Between Chair and Keyboard

Nate Schutta
Software Architect
VMware
@ntschutta

Most Mondays,
around noon Central
https://www.twitch.tv/vmwaretanzu

https://www.twitch.tv/vmwaretanzu

